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cylinder arrays in cross-flow 

By M. P. PAIDOUSSIS, D. MAVRIPLIS~AND S. J. PRICE 
Department of Mechanical Engineering, McGill University, 

817 Sherbrooke Street West, Montreal, &&bee, Canada 

(Received 3 May 1983 and in revised form 21 January 1984) 

The full linear unsteady potential-flow solution for fluid flowing across a bank of 
cylinders has been obtained. The potential function is expanded into a Fourier series 
and the boundary condition of impermeability is applied a t  the moving cylinder 
surfaces. Mutual contradictions among the various potential-flow solutions available 
in the literature are exposed, and it is shown that the present solution is consistent 
with certain basic physical checks, which some of the previous solutions could not 
meet. The effect of fluid viscosity is incorporated solely as a phase lag between the 
steady-state lift and drag coefficients on each cylinder and its respective motions. By 
incorporating the fluid-dynamic forces obtained from this modified potential-flow 
theory in a stability analysis, the threshold for fluid-elastic instability is predicted. 
Comparison with experimentally observed thresholds is encouraging, given the high 
level of idealization of the theory and the accuracy of present-day semi-empirical 
prediction methods. 

1. Introduction 
Arrays of cylinders, in various geometrical arrangements (figure 1 ), are commonly 

found in a variety of industrial equipment; e.g. in heat exchangers and steam 
generators in the form of tubes containing the primary fluid flow and subjected to  
an external cross-flow by the secondary fluid. Such systems have, for a long time now, 
been known to be subject to  a number of interesting and, from the practical 
viewpoint, undesirable flow-induced vibration phenomena ; yet the state of under- 
standing of the fluid mechanics and of the fluid-structure interaction mechanisms 
associated with these phenomena is still quite primitive (Paidoussis 1980, 1981). 

It is now generally accepted that there are three types of vibration of cylinder 
arrays, induced by cross-flow: (i) those due to buffeting; (ii) those due to flow 
periodicity in the interstitial flow, sometimes reinforced acoustically; (iii) the so-called 
fluid-elastic instability. This latter, which is the subject of this paper, is a self-excited 
fluid-elastic phenomenon, involving coupling between the flow field and cylinder 
motions. At a given threshold flow velocity, energy transfer from the flowing fluid 
to the cylinders leads to amplified oscillations - i.e. to an instability in the linear sense. 
The amplitude of these oscillations is generally large, often resulting in intercylinder 
impact and hence eventually to failure. From the practical point of view, fluid-elastic 
instability is by far the most serious vibration problem in heat-exchange equipment 
(Paidoussis 1980). More to the point, there is considerable interest a t  the fundamental 
level as to  the underlying mechanism associated with this phenomenon. (It is 
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FIGURE 1 .  Two types of staggered arrays of cylinders in cross-flow: (a )  ‘normal’; ( b )  ‘parallel ’. or 
‘rotated’, equilateral triangular array. The dimensionless pitch ratio is defined as S J D .  Also shown 
are the separated (rotational) flow regions behind two cylinders in each case. 

unfortunate, perhaps, that the severe financial and safety repercussions of failure and 
shutdown of large power-generating facilities, caused by fluid-elastic instabilities, 
have created a demand for instant predictive design tools for avoiding them; as a 
result, in the now voluminous literature on the subject, empirical ad hoc studies 
greatly outnumber the few attempts to gain understanding at  the fundamental level.) 

Several models have been proposed for the meclhanism underlying fluitl-elastic 
instability. Roberts (1962, 1966) demonstrated the existenc3e of a Coanda-like, 
jet-switching/coalescence mechanism in the separated flow behind an alternately 
staggered cylinder row, associated with streamwise motions of alternate cylinders, 
and showed that this is capable of producing large-amplitude self-excited oscillations. 
Although Roberts’ elegant analytical model correlated well wi th  his own experimcntal 
data, the existence of bistable jets is considered to be limited to  specific. array 
geometries; in any event, the model has not been extendccl to deal with multi-row 
arrays. 

Connors (1970) generated a semi-empirical, quasi-static modcl for a single row of 
cylinders, based on a position-dependent mechanism, and involving the use of 
measured aerodynamic lift- and drag-coefficient data - both in the equilibrium 
configuration and in ‘deformed ’ configurations, with some cylindcrs displaced in the 
streamwise or cross-stream directions. Connors found that, for certain patterns of 
intercylinder displacements, energy may be extrackd from the fluid over a cycle of 
cylinder oscillations ; when this exc>eeds the internal dissipative energy in the 
cylinders, then instability will develop. This model was later elahorated upon and 
conceptually extended to multi-row arrays by Blevins (1974, 1977). Connors and 
Blevins obtained a simple relation for the ciritical flow velocity U,, for the onset of 
fluid-elastic instability, namely 

where p is the fluid density, D and m arc rexpcctively the diameter and mass per unit 
length of the cylinders, and f and S are the frequency and logarithmic dcrrcment of 
vibration of the cylinders. The dimensionless ‘reduced velocity ’ L‘/fIj and ‘mass- 
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damping parameter ’ mS/pD2 arise quite commonly and naturally in many aeroelastic 
studies. Nevertheless, it should be stressed that in this case all the fluid mechanics 
of the problem is absorbed into the empirical factor K .  Equation ( 1 )  gained 
widespread acceptance because of its simplicity, as well as success in some cases, and 
a great deal of effort has subsequently been devoted to empirically developing ‘ more 
reliable ’ and ‘ more appropriate ’ (for different array geometries) values of K ,  
separating m/pD2 from Sand adjusting the exponents on each in ( l ) ,  etc. (Pettigrew, 
Sylvestre & Campagna 1978; Weaver & El Kashlan 1981 ; Paidoussis 1981). 

Tanaka & Takahara (1981) recognized the limitations of Connors’ quasi-static 
hypothesis, and obtained good agreement between their own experiments and theory, 
by measuring the full unsteady fluid-dynamic forces on cylinders in a water tunnel 
and using them in a linear analysis - which bespeaks of the high quality of their 
measurements. 

Whereas the above-mentioned work has been more or less successful in determining 
the critical flow velocities for design purposes, i t  offers litt,le insight into the actual 
physical phenomena taking place. It ought to be mentioned that Connors’ analysis 
implicitly supposes that the fluid-dynamic stiffness terms play a predominant role 
in inducing the instability. This is in contrast to aerodynamic-damping-induced 
instabilities, e.g. in Den Hartog’s (1932) much praised quasi-static model for galloping 
of iced transmission lines. With this observation in mind, Price & Pai‘doussis (1982, 
1983) proposed a similar quasi-static flutter mechanism for a double-row array, into 
which measured aerodynamic stiffness and damping coefficients are incorporated. The 
critical flow velocity is found to be dependent on, among other things, array 
geometry, fluidlcylinder density ratio and intercylinder modal pattern. The relation- 
ship for U J f D  is more complex than that of ( l ) ,  and this theory is in agreement 
with a number of experimental observations. 

In  a recent, remarkable study Chen (1983a,b) suggests that two different mecha- 
nisms are responsible for fluid-elastic instability: in liquid flow, given the low flow 
velocities necessary for precipitating the instability, the ratio of cylinder vibrational 
velocity to the mainstream flow velocity is high, and hence the prevailing mechanism 
is one of flutter by negative hydrodynamic damping; in gaseous flow, on the other 
hand, the Connors-Blevins mechanism predominates, which is an aerodynamic- 
stiffness-controlled mechanism involving a t  least two degrees of freedom. His analysis 
requires knowledge of the unsteady fluid force coefficients ; using Tanaka & Takahara’s 
(1981) data, Chen’s results compare favourably with experimental data in both liquid- 
and gaseous-flow cases. Recently, Lever & Weaver (1982) proposed yet another 
model, in which fluid-elastic instability is presumed to be a unique mechanism arising 
from interstitial flow redistribution, associated with and lagging behind cylinder 
motions. The results obtained agree remarkably with Chen’s, despite the fundamental 
differences in the two models, as well as with experimental trends for some array 
geomet.ries ; nevertheless, some important disagreements also arise (Pai’doussis 1983 ; 
Heinecke & Mohr 1982). 

Flow-visualization experiments by one of the authors (Mavriplis 1982), as well as 
earlier work by Wallis (1939), have shown that for some array geometries the wakes 
behind the cylinders are quite narrow, especially when intercylinder spacing is 
small - as sketched in figure 1 (a ) .  The presence of adjacent cylinders seems to deflect 
fluid into the wake of upstream cylinders, minimizing the regions of rotational flow 
and resulting in surprisingly potential-like flow distributions. Hence, i t  is rather 
tempting and not so outrageous to try analysing the system as if the flow were entirely 
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inviscid.? Dalton & Helfinstine (1971) arrived a t  an inviscid solution by considering 
each cylinder as a doublet in uniform flow, plus the appropriate image doublets due 
to mutual interaction of the cylinders, thus obtaining an infinite-series velocity- 
potential function. However, their analysis becomes overlaborious for systems of 
more than a few cylinders, and singularities arise for closely spaced cylinders; 
moreover, in their work no attention has been given to the question of instabilities. 
Balsa (1977) solved the potentiaI-flow problem for a general array of cylinders in cross- 
flow by utilizing matched-asymptotic-expansion techniques. A model for predicting 
static instability (divergence) is also presented, although the dynamic (flutter) 
instability is not given any attention. Comparison between theoretical and experi- 
mental results is very limited. 

Chen (1978) tackled the same problem, solving the Laplace equation in terms of 
infinite Fourier series, subject to the impermeability boundary conditions at the 
surface of each cylinder. Examples of predicted inertial, fluid-dynamic damping and 
stiffness terms are presented, and they are found to compare poorly with experiments. 
A full stability analysis is also given, but no results are published. However, it  is felt 
that in this solution several important terms have been neglected, as will be discussed 
later, raising questions as to the validity of the results. 

The three aforementioned potential-flow theories have been found (see $ 5 )  to be 
in disagreement with one another, in terms of some important features of the results 
obtained, $ indicating that they cannot all be wholly correct. An aim of the present 
paper is to resolve these discrepancies, by carefully rederiving the potential-flow 
solution for the problem a t  hand and testing it along the way in every conceivable 
manner. It is then possible to pursue the more general aim of this paper, which is 
to explore further the capabilities and limitations of potential-flow theory for dealing 
with the dynamical behaviour of cylinder arrays in cross-flow. 

2. Formulation of the flow field 
The analysis to be presented is, in principle at least, valid for all array geometries; 

however, because of the narrowness of the wakes in the so-called ‘normal triangular’ 
configuration of figure 1 ( a ) ,  it  is expected t o  be most successful for that geometry 
and especially when the cylinders are closely spaced, i.e. when s,/D is small. Figure 
2 defines the various geometrical parameters, as well as the coordinate systems used : 
one inertial set (rt ,O$) centred on each cylinder at its position of equilibrium, and 
another (ri ,  8;) moving with each cylinder in addition to the central inertial 
Cartesian and polar systems (x, y) and (yo, 0,). 

It is assumed that the flow field is represented by the potential function @, with 
one component due to the mainstream cross-flow and the other due to the 
presence/motion of each cylinder j, i.e. 

K 

I - 1  
@ ( r ,  8, t )  = ur, cos (0,- $ 0 )  + x 4,(r, 8 , t ) ,  (2) 

i In the case of axial flow about cylinders and cylinder arrays, where rotational flow regions 
are rather small, potential-flow theory has been eminently successful in predicting the dynamical 
behaviour and stability characteristics of the system (Paidoussis 1966a, b ;  1979). 

1 For example, the velocity-dependent self-damping force, produced on itself by motion of a 
cylinder in the array, is found to be perpendicular to cylinder motion by Dalton & Helfinstine (197 I ) ,  
whilst Chen’s (1978) theory predicts components both normal and parallel to cylinder motion ; 
Balsa’s (1977) solution, on the other hand, indicates that this force is zero. 
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FIGURE 2. ( a )  The system under consideration, with the associated coordinate systems (z, y), (ro,  Oo), 
( r j ,  Oj), the geometric parameters R,,, $,j, and cylinder displacements uk, vk, defined therein; ( b )  
the coordinate systems ( r i ,  O;) ,  (rj ,  Oi), moving with each cylinder, vis a vis the fixed ones, ( r , ,  Oi), 
( r j ,  O j ) ,  and associated definitions. 

where K is the number of cylinders in the system. As @ must satisfy the Laplace 
equation, i t  is convenient to express the $, in terms of Fourier series; thus for the 
j th  cylinder 

0 R,+l 
$$ = - {a,, cos no; + bj ,  sin no;) (3) 

in terms of the moving coordinate system centred on that cylinder, where i t  is noted 
that $j+O as ri-+ 00. The total velocity potential @ must satisfy the condition of 
impermeability a t  the surface of the cylinders, i.e. 

It-i r;" 

where ui and vt are the Cartesian displacements of cylinder i in the x- and y-directions 
respectively. The constants a,,, b,, are determined through application of this 
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boundary condition, and to facilitate this endeavour the following expansions are 
found useful : 

j=1 m=1 

K o o  

j-1 m-1 

K m  

j-1 m=1 

K c o  

i - n) ainl +C* X GLnij{ajml sin ( (m + n)  $ij) - Sjml  cos ( (m + n)  = 0, 

(-n)yinz+X* C GLnij{yjml cos ((m+n)$l;j)+PjmlSin((m+n) $ij)} = 0, 

(-n) Pint +C* C GLnij {yjml sin ( (m+n) $ij)-Pjml cos ((m+n) $;j)} = di l ,  

so that the task now becomes to determine ajnl, ..., ajnL. 
Before applying the boundary conditions, however, all the $j must be expressed 

in the moving coordinate frame centred on each of the cylinders in turn. Thus, for 
thej th  potential to be expressed in the coordinate frame associated with the moving 
cylinder i ,  one may use the vectorial relationship 

r; exp (i0;) = r;  exp (i0;) - R& exp (i$&), 

as is evident from figure 2 when points A and B coincide, where i = 2/ - 1 ; this, raised 
to the power-n and expanded into a convergent Taylor series about r i /R& = 0 
(Pai'doussis & Suss 1977 ; Mavriplis 1982), after considerable manipulation leads to 

) (8) 

and to a similar expression for sinn0;lr;". With the aid of these expressions, $j in 
(3) is transformed into the ( r ; ,  0;) coordinate system, and one finally obtains 

0 = Ur, cos (0, - $o)  + C T { a i n  cos n0; + bin sinnf?;} 
a3 Rn+l 

n=i ' i  

and Snl, Sil is Kronecker's delta. This represents 2K sets of 2K x 00 coupled eyua- 
tions, with as many unknowns. Truncating the series a t  appropriate values of m and 
n, the coefficients ainl, . . . , Sjnl may clearly be determined numerically. 
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Once @ is determined, the surface pressure on each cylinder at its position of 
equilibrium may be obtained from the unsteady Bernoulli equation 

and hence the fluid-dynamic forces acting on cylinder i arc 

PI,,=,R cosBidBi, = - Jozn Plr2=R R sin BidBi (11) jozn Hi = - 

in the x- and y-directions respectively. Evaluation of (10) would, a t  first sight, 
appear to be quite straightforward; however, if sufficient care is not exercised, it may 
lead to erroneous results, as discussed in 93. 

3. Evaluation of the unsteady pressure field on the surface of the cylinders 
In  a previous study (Chen 1978) the a@/at term in (10) was found to  yield only 

inertial terms - i.e. terms proportional to i32uL/at2, a2vl/at2. However, velocity- 
dependent terms (fluid-dynamic damping terms) also arise from a@/at,  but this was 
not realized in that previous analysis through failure to use the moving coordinate 
frames ( r i ,  B i ) ,  rather than those ( r j ,  B j )  fixed a t  equilibrium. 

The manner in which these velocity-dependent terms arise may be illustrated by 
considering the simple case of a single cylinder in inviscid cross-flow. This system may 
be represented by either (i) a stationary doublet in uniform flow, with a complex 
potential function F ( z )  = Uz + UR2/z ,  or (ii) a moving doublet in otherwise stationary 
fluid, where F(z )  = UR2/[z- tJ t )]  and <( t )  = - Ut. The surface-pressure distribution 
in both cases is found by applying 

PI,=, = -p  -+$V@*V@ + const, (12) {E I 
with @ = Re{F(z)}. 

a@/at = 0. Evaluation of V@*V@ then leads to the well-known result 
Now, in the first case, the potential function is time-independent, and hence 

PI,=, =;ZpU2(1-4sin2B)+const, (13) 

where i t  may be shown that the constant represents P,, the static pressure far away. 
In  case (ii), if it  is assumed that the doublet passes through the origin a t  t = 0, one 

obtains V@.V@Jz=R = U2.  Thus, if (a@/at),=, is neglected, then, in spite of the fact 
that there is no acceleration of the cylinder, the correct pressure distribution cannot 
be obtained. In  fact, i t  may be shown that (a@/at),=, = - U2 cos 28, thus leading once 
more to (13), provided that the terms in (12) are correctly interpreted. 

Thus it has been shown that a@/at is important in determining not only 
fluid-dynamic inertial (acceleration) terms, but also velocity-dependent terms. As the 
cylinders in the problem a t  hand are moving, moving reference frames must be 
utilized; the various terms in (10) may be taken a t  equilibrium in all cases, except 
for the a@/at term, which is evaluated a t  equilibrium after the differentiation (with 
respect to time) is performed. More explicitly, in differentiating equations of the form 
of (7),  terms such as cosnB;/r; and the ajnl,  Djnl implicit in the ajn,  bjn must be 
considered to be time-dependent. 

The V@*V@ term in (10) yields additional fluid-dynamic damping forces,? as well 

t Of Course (10) gives the pressure, which only when integrated through (1 1) leads to forces. It 
is, however, convenient to thus identify the terms that eventually lead to these forces. 
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as the steady lift and drag forces due solely to the cross-flow. I n  addition there will 
be terms dependent on the displacement of each and every cylinder, i.e. the 
fluid-dynamic stiffness terms. 

Evaluation of the a@/at term 
Expanding the sine and cosine terms of (7 ) ,  a@/at, evaluated a t  the cylinder 
equilibrium positions (i.e. R& = Rgj, $ij = $,j, r; = r,, 0; = O,) ,  may be written as 

x [{ujn cos (m + n) $sj  + bjn sin (m + n) $,j} cos me, 

+ {ujn sin (m + n) $,, - bjn cos (m + n) $,j} sin mei] 

x [{ajn cos (m + n) $,, + bjn sin (m + n) $,j} (rim cos me;). 

+ {ajn sin (m + n) $,j - bjn cos (m + n) $ t j }  (rim sin mr9;)*] 

x [{ajn cos (m + n) $lj + bjn sin (m + n) $,j> cos me, 

+ {a,n sin (m + n) kij - bjn cos (m + n) $,& sin mO,] 

x [{ - ajn sin (m + n) $,j + bjn cos (m + n) $,!} cos mr9, 

+{ajncos (m+n)$,j+bjnsin ( ~ + T L ) $ , ~ }  sinmB,], (14) 
where ( )' = a( ) /a t .  

write 
Each of the dotted terms has to be evaluated separately. Thus, using ( 5 ) ,  one may 

K K 

where 

and a similar expression holds for yjnl.  Clearly, terms proportional to UU, and Utjl 
arise, i.e. damping terms which were neglected in the aforementioned previous 
analysis. The lengthy manipulations necessary for obtaining ajn and bjn ,  which also 
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necessitate the evaluation of R,, and $ii, are outlined in Appendix A. The (c7ajnl/aulf), 
etc., terms are given by the implicit equations 

where pinll., Qinl l r  are given in Appendix A, with similar expressions for the rest of 
the ul, and vl, derivatives of ainl, pjnl ,  yinl and ajnl. Furthermore, R, and $,j are given 
by (A 2 )  and (A 3) respectively. 

Xext, in order to evaluate the dotted terms in the second and fourth summations 
of (14) ,  the terms of the type cos nO;/r; and rim cos me; must first be expressed in terms 
of the stationary frame (ri, St).  This is done in a similar manner to that used to obtain 
(6), but the expansion is made about Ri/ri = 0, yielding 

cosne: O0 (m- l ) !  
2- , - I :  cos [mB,- (m-n) 

Ti m=n ( n - l ) ! ( m - n ) ! r r  

and similar expressions for the sine terms. Differentiating with respect to time and 
evaluating at  Ri = 0, i.e. a t  equilibrium, gives 

where i t  is further noted (figure 2 )  that  

Hence, with all the dotted quantities evaluated, aO/at may be found. The 
contribution to the forces on the cylinders due to this term, denoted by Hi1) and Vil ) ,  
are somewhat simplified - after lengthy manipulation - due to orthogonality of the 
trigonometric functions, and are given by 

K K 

1-1 E=l 

K K 

1-1 1=1 

] (19) 

Hi1) = pxR2 C [ A ,  ii, + B,, ijl] + p U R  C [{Cgi) + Cig)} u, + (06:) + Dig)} ? j l  1, 

Vil) = pxR2 [Xtl ii,+E,lVl]+pUR C [ { ~ i ~ ) + ~ ~ ~ ) } ~ ~ + { ~ ~ ~ ) + ~ ~ ~ ) } . i r l ] ,  

where the superscript ( 1 )  denotes terms arising from time derivatives of a,  /3, y ,  6, 
and (2) denotes those arising from coordinate-system movement. The constants Ail, 
Bi1, etc. are given in Appendix B. It is noted that in Chen's (1978) previous analysis 
all the terms involving u, and .ir, are absenc. 

Evaluation of V O  * V@ term 
The flavour, intricacy and requisite care in the derivation of the terms in (10) may 
be appreciated from the foregoing evaluation of a@/at. In thc interests of brcvity, 
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therefore, the details of the derivation of the V@.V@ term will not be presented here. 
The interested reader is referred for details to Mavripilis (1982) and Chen (1978). 

It may be shown that the contributions of V@.V@ to the drag and lift forces on 
cylinder i, denoted by Hiz)  and Viz) ,  are 

K 1 

where CDoi and CLoi are the steady drag and lift coefficients and C$), . . ., D!;) are 
coefficients of additional velocity-dependent terms, expressions for which are given 
in Appendix €3. 

Evaluation of the stiffness forces 

The stiffness forces represent the changes in the steady lift and drag on thc cylinders 
as they are displaced. Assuming that they may be linearized, the contribution to the 
lift and drag forces may be expressed by 

where the partial-derivative terms are given in Appendix R ; for det,ailed derivations 
the reader is referred to Mavriplis (1982). 

In all the foregoing it has been assumed that pressure fluctuations on the surface 
of the cylinders are generated instantaneously; i.e. it has bccn presumod that there 
is no phase difference between cylinder displacements and the pressure field, 
otherwise known as thc quasi-static assumption. Yct, it has been shown that phase 
lags do arise in the problem at hand - a t  least in the model proposed by Roberts (1962, 
1966). In  that work, Roberts evaluated the finite time necessary for the intercylinder 
fluid jets to adjust to rcpositioning of the cylinders, as well as the resulting change 
in the cylinder wake (or ‘bubble’) pressure. Here the phase lag may be thought to 
be related to viscous effects more generally, i.e. to the lag that the cylinder wake 
experiences in adjusting to cylinder motion. In  terms of the mean-flow velocity 11 
and cylinder diameter D, this time lag should be proportional to D / U ,  and hence the 
phase-lag angle x should be proportional to fD/lJ, where f is the frequency of 
oscillation (cf. Lever & Weaver 1982; White 1979). 

Thus, although viscous forces per se will not be calculated and used in this 
analysis - having been assumed to be of secondary importance at the outset of this 
paper - one important effect of these forces will be incorporated in the analysis, 
namcly the phase-lag effect discussed above, which modifies the quasi-static forces. 
The analogy of the aerofoil could be invoked here : the viscous forces in that case are 
small and may bc neglected; yet they have a very important effect in determining 
thc structure of the flow and modifying the inviscid forces - hence determining the 
Kutta condition.j 

f Phase lag is well known to have an important effect on stability in aero-elasticity, Thus, in 
addition to  the aforementioned work by Roberts (1966) and recent work by Lever 8: Wearer (1982) 
on the problem a t  hand, note the importance of phase lag - albeit due to  mechanisms different from 
the one proposed here ~ in flutter of aerofoils (Risplinghoff, Ashlry 8: Halfman 1955; Dowrll at al. 
1980) and of overhead transmission lines (Simpson & Flower 1977). 
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If the cylinders oscillate harmonically only in the cross-stream direction, such that 
l i p  = U p  sin (wt+  $,), then the forces Hi3) ,  Vi3) will also vary harmonically, but lagging 
by a phase angle x, so that 

=,0i 
K 

Hi3) = pU 'R p=1 Z ( ~ ) 6 , s i n ( ~ t + $ ~ + x ) ,  

which may be rewritten as 

and similarly for Vi3) .  The generalization to more general motions is self-evident, 
yielding 

K 
Hi3) = pPR Z { [ E i p c o s x u p + ~ p c o s x v p ] +  

w 
(23) 

p=1 

w 

sin x 
cos x up + E p  cos x 'up] + 

p=1 

where 

and where the cylinders have been assumed to oscillate harmonically; w is the 
vibration frequency of the cylinders a t  the threshold of instability.? Hence, yet 
another set of velocity-dependent forces, of the form of the second terms of ( 2 3 ) ,  
emerge, related to this phase lag. 

4. The equations of motion and their solution 

motion may be written in the form 
If each of the cylinders is considered to be a simple beam, then the equations of 

I 

for i = 1,2, . . . , K ,  where El, c and m are respectively the flexural rigidity, internal 
(viscous) damping and mass per unit length of each cylinder; t'he right-hand sides 
of the equations are respectively Hi = Hi1) + Hi2) + Hi3) ,  & = Vi l )  + Vi2) + y 3 ) :  where 
the component terms Hi'), H i 2 ) ,  etc. have been derived in $ 3  -in general also 
containing phase-related terms of the form introduced in ( 2 3 ) .  

t I t  should be noted, however, that  in the calculations w will simply to  be taken as the natural 
frequency of the cylinders, to avoid the complication of' iterative eigenvaluc solution procwiures. 
The justification for this is that ,  for oscillatory instabilities a 
instability threshold is very close to the natural  frequency ( 
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The solution of the linearized form of (24) is achieved by the modal-analysis method 
(Bishop & Johnson 1960), where 

where the kP(z) are the orthonormal set of beam eigenfunctions of the cylinders in 
vucuo. Substituting into (24), invoking the orthogonality of the kP(z), and truncating 
the series at an appropriate value ofp, one eventually obtains a set of equations which 
may be written in matrix form as follows 

Ma+Ca+Ka = 0,  (26) 

where a = {q,r}T. Transforming this into a standard eigenvalue problem, the 2K 
eigenvalues of the system may be obtained, which permits one to assess stability of 
the system with varying U.  

The detailed forms of M, C and K will not be given here. Suffice i t  to say that, 
when (26) is written in dimensionless form, the following dimensionless quantities will 
be involved : the mass parameter m/pD2 ; the logarithmic decrement S of the cylinders 
in vucuo; the reduced velocity U / f D ,  where f = o/2n is the first-mode in vucuo 
frequency, o being the corresponding radian frequency ; the frequency ratio 
6,  = w p / w ,  where op is the radian frequency of the pth mode. 

5. Testing the potential-flow solution 
Although an attempt has been made in the foregoing to incorporate viscous effects 

by introducing a phase lag, the major part of this work involves the derivation of 
the purely inviscid potential-flow solution for the system under consideration. As this 
solution is known to be unique and as apparent contradictions have been found to 
exist between various previous solutions for this problem, i t  is imperative to 
undertake extensive testing of this aspect of the theory, prior to embarking on a full- 
scale stability analysis. 

Apart from verifying that some obvious symmetry conditions imposed by various 
cylinder geometries are indeed reproduced in the calculated force coefficients, various 
other simple tests were also conducted. Thus, the flow a t  zero incidence (k0 = 0 - see 
figure 2 )  across a particular array was reproduced by rotating the array through an 
angle k0 and imposing an angle of incidence ko to the flow. 

It was then attempted to compare the various fluid force coefficients in (19)-(24) 
with those obtained by other analyses. The virtual- (added-) mass coefficients A,,, &, 
Bil,  Biz were compared with those obtained by Chen (1975, 1978), Suss (1977), 
Paidoussis & Suss (1977) and Dalton & Helfinstine (1971). The coefficients were found 
to agree to within three significant figures for the first two, and to within two 
significant figures for the third one, as illustrated in table 1 .  The steady lift and drag 
coefficients were also compared to some available theoretical results by Chen and 
Dalton & Helfinstine, in table 1, displaying similarly good agreement. 

The portions of the damping coefficients due to the V@*V@ term in Bernoulli’s 
equation, i.e. Ci;), 6$), D$), @), which have also been obtained by Chen (1978), were 
compared in the case of a five-cylinder system. Some selected results are shown in 
the upper part of table 2 ,  where agreement is found to obtain to three significant 
figures. 

The total fluid-damping coefficients Ctl,  Di, ,  eil, DtZ cannot be verified, as no other 
potential-flow results are available in the literature. However, some simplified cases 
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-00 Present 
analysis Chen (1978) Suss (1977) 

Inertia terms All - 1.0320 - 1.0325 - 1.0328 

Bll - 1.0320 - 1.0325 - 1.0328 
El, -0.2269 -0.2265 -0.2266 

(& = B,, = 0) 4 2  0.2269 0.2265 0.2266 

Steady lift and CDol -0.3464 -0.3493 - 
drag coefficients CLOl 0 0 - 

t Obtained by Mavriplis (1982), using Dalton & Helfinstine’s analysis. 
1 Obtained graphically. 

Dalton & 
Helfinstine 

(1971) 

0.2245 t 
- 1.0313t 

- 1.0313t 
- 0.2245-f 

- 0.3474$ 
- 

TABLE 1 .  Comparison of the inertia terms and steady lift and drag forces predicted by the present 
analysis with those obtained by various other authors in the published literature 

Damping terms 

Stiffness terms 

Present analysis 

0 
-0.7478 
-0.9510 

0 
1.090 
0 
0 

- 1.657 

Chen (1978) 

0 
-0.747 
-0.950 

0 
1.089 
0 
0 

-1.650 

TABLE 2. Certain damping terms due to the steady part of Bernoulli’s equation (V@.V@) and some 
stiffness terms, obtained analytically by the present analysis, compared with those of Chen (1978), 
obtained by displacing one cylinder at  a time, for the five-cylinder row shown 

may be verified by a specially constructed quasistatic analysis. Thus, if all cylinders 
move with the same velocities u and d in the x- and y-directions, the array 
configuration remains unchanged, as the whole array is displaced as a unit. Without 
giving details of the analysis here, which follows the pattern of Den Hartog’s (1932) 
quasi-static flutter analysis (see Price & Paidoussis 1983; Mavriplis 1982), suffice i t  
to say that the unsteady drag and lift forces on the cylinders are found to be given 
by 

with ui = u, l j i  = 2 j  for all i ,  and a: x e /U .  The aCLo,/2a: and aCDOi/aa: terms arise 
because, under the effect of the imposed motion, the array is not totally symmetric 
vis a vis the mean flow; i.e. the angle a effectively corresponds to - $,. Agreement 
between the results obtained by the potential-flow analysis and this quasi-static 
approach was found to be excellent, the individual terms agreeing to within four 
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significant figures. This represents an important feature of this analysis, as not all 
previous analyses pass this simple test. 

It must nevertheless be noted that, in the above case where the array is moved 
as a unit, there is no intercylinder motion. Hence, only the Cii), Dj;) types of terms 
in (19) are verified, and it would be desirable to test independently the terms of the 
types Cjt), Djj), which are associated with the O i j n l ,  Pin,, y j n l ,  Sinl terms (see (16)). To 
this end, the changes to the ajnl,  ..., ajnl ,  i.e. the aajnl/aul., etc., have been calculated 
by displacing each cylinder by a small amount Au a t  the input stage of the computer 
program and recalculating all the ajnl, . . . , ajnl coefficients a t  each step, thus obtaining 
aajnl/aul, z Aajnl /Auzr.  This somewhat inelegant and approximate evaluation of the 
aajnz/aul. and other similar terms permitted the eventual evaluation of the Cjt) type 
of terms. Comparisons of these terms with those obtained analytically by the 
potential-flow analysis are illustrated in table 3. Acceptable agreement is obtained ; 
most of the discrepancies are thought to arise from the finite step size of Au (or Av). 

I n  spite of all the above testing, the theory still did not agree with that of Balsa 
(1977). Regardless of cylinder array configuration, the present analysis yields zero 
diagonals in the Ci, and Biz submatrices, while the diagonal of the Di, submatrix is 
non-zero and equal to the negative of the ciz diagonal. Physically, this implies that 
the motion of any one cylinder in an array produces a force on itself which is 
perpendicular to its motion, and precludes the possibility of any self-damping forces 
on the cylinder in the direction of its motion. A cylinder can, however, produce 
damping forces in any direction on the other cylinders regardless of its motion. This 
result disagrees with that obtained in the work of Balsa (1977). By constructing inner- 
and outer-region canonical potentials for a cylinder array and matching them 
asymptotically, Balsa arrived a t  the result that the motion of any one cylinder in 
the array produces no net damping force on itself in either direction, i.e. the diagonals 
of all submatrices Cil ,  cil, D i l ,  oil are zero. After the extensive testing performed on 
the present analysis, i t  is felt that  the fault must lie in Balsa’s work rather than in 
this analysis.? Balsa’s expansions are expressed in powers of e,  where e = D/s ,  is the 
inverse of the pitch ratio. I n  performing the asymptotic matching, three inner terms 
and four outer terms are used. However, for pitch ratios of order 1.5, the fourth term 
in the expansion, c4, is approximately 0.2. Hence, at first view, it seems Balsa may 
have neglected significant higher-order terms. (In fact, the diagonals of nil, q,, which 
vanish in Balsa’s analysis, are always substantially smaller than unity in the present 
analysis.) However, the above is only a possible explanation of the inconsistency 
between the two analyses, and the matter has not been pursued further. 

Nevertheless, to ensure that the present analysis is not in error, the method of 
Dalton & Helfinstine (1971) was employed to calculate the damping terms in the 
simple case of a row of two cylinders normal to  the flow. The method consists of 
constructing the complex potential function by considering one doublet for each 
cylinder moving in still fluid, plus its image in the neighbouring cylinder, which is 
required to maintain a circular streamline a t  the neighbouring cylinder boundary, 
plus the images of the images and so on. For the two cylinders a t  a pitch ratio of 
1.5, a. total of six doublets was employed (i.e. up to  ‘third order ’), since the third-order 
images were about 1 yo of the strength of the original doublet. The complex potential 
function was obtained through a specially written computer program, and its time 
derivativc calculated by first evaluating the complex potential on the moving 
cylinder boundaries a t  two different times and then dividing the difference by the 

t Although it is realized that neither truly represents the physics of the situation, as an oscillating 
cJ-lindei. will bc suhjected to a damping force due to its own motion 
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Cylinder-displacement 
@-i 

d 
method Analytical 

Au = 0.0040 calculation 
&; 

p . 3 7 9 1  -0,37911 
0.3791 -0.3791 

0.1992 -0.1992 c 0.1992 -0.1992 1 
1 0.3292 -0.3258 

0.3292 -0.3258 

[ 0.2376 -0.2376 1 0.2376 -0.2376 

[ [a’] 
[Dp]  

TABLE 3. Comparison of the potential flow damping terms due to the time derivatives of the sin,, 
. . . , 8jnl coefficients obtained analytically with those obtained by displacing the cylinders and then 
calculating the change to the coefficients 

Present method 
Doublet (Dalton 

& Helfinstine 1971)$ 

1 
1 
1 

- 1.0313 k0.2245 
f0.2245 - 1.0313 

0.3534 -0.6239 
0.6239 -0.3534 

0.1915 -0.5172 1 [ 0.5172 -0.1915 

1 - 1.0320 k0.2269 
0.2269 - 1.0320 

[ 0.3791 -0.65501 
0.6550 -0.3791 

[q;’]+[Cp] 0.1992 -0.4751 

c 
[Aill t  or [Bill 

[a’] + [m’l 

L0.4751 -0.1992 

t Off-diagonals are positive for A,,, negative for &. & and Ri, both vanish in this case 
$ Obtained by Mavriplis (1982), using Dalton & Helfinstine’s analysis. 

TABLE 4. Comparison of the inertia terms and the damping terms due solely to the unsteady part 
(a@/at)  of Bernoulli’s equation obtained in the present analysis with those obtained by the method 
of Dalton & Helfinstine (1971) 

time step. It is noted that, for the particular geometry considered in this test, the Ci, 
and submatrices vanish and only the off-diagonal terms of the Dil and cil. 
submatrices need be considered. As may be seen in table 4, both the virtual- (added-) 
mass coefficients and the damping terms due to the time derivative of the potential 
function are found to be in good agreement with those obtained by the present 
analysis. This simple test provides substantial evidence in favour of the validity of 
the present solution over that of Balsa (1977). 

Finally, the stiffness coefficients ((23) with x = 0) were also calculated by directly 
noting the changes in steady lift and drag coefficients on each cylinder as various 
cylinders in the array were displaced. This is the method employed by Chen (1978). 
His results, as well as those obtained in this work by displacing the cylinders, compare 
favourably with the stiffness coefficients calculated by the expressions developed in 
the present paper, as may be seen in the lower half of table 2.  

Having tested all parts of the analysis, i t  may now be stated that, to the authors’ 
knowledge, i t  is the first complete and correct potential-flow solution which is suitable 
for the analysis of closely packed array geometries, involving large numbers of 
cylinders. t 

t Although Dalton & Helfinstine’s (1971) solution is believed to agree with this work, in its 
present form i t  is limited to calculating inertial and steady lift and drag coefficients, and i t  is difficult 
to extend beyond that. 
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6. Calculations and results 
Computations were largely confined to  seven-cylinder arrays of the type shown 

inset in figures 3 and 4 - mainly for economy, as computational costs increase sharply 
with the number of cylinders in the array. Nevertheless, these arrays were considered 
to be sufficiently large and their geometry sufficiently general to exhibit all salient 
features of larger systems.f As virtually all the experimental data to which the 
theoreticalresultswill be comparedare for arrays with 1.3 < s,/D < 1.5, computations 
were made with the two extremum values. 

In  the calculations, the experimentally reasonable value of S = 0.01 was used, and 
m/pD2 was varied from O(1) to 0(105), the lower value corresponding to light 
cylinders in dense (liquid) flows and the upper one to heavy cylinders in gaseous flows. 

The only other parameter that  needs to  be selected is x. It is recalled t)hat this phase 
angle, which is attributed to viscous effects, has been introduced heuristically, and 
that a t  present no means is available for calculating it. Nevertheless, valuable 
guidance may be obtained from Theodorsen's (see Bisplinghoff, Ashley & Halfman 
1955; Dowel1 et al. 1980), Simpson & Flower's (1977) and Lever & Weaver's (1982) 
work, albeit for physical models not identical with the one proposed here; in all cases 
the phase lag is found to  be dependent, sometimes nearly linearly, on the reduced 
frequency f D / U . $  Thus, for high values of U / f D ,  a low value of x would be expected, 
and vice versa. Guided by the abovementioned work and also by the observed range 
of critical U / f D  for fluid-elastic instabilities, extensive calculations were conducted 
with x = 0", 10" and 30", as shown in figures 3 and 4; the effect of x is more extensively 
discussed later, in conjunction with figure 5. 

The calculated theoretical dimensionless critical flow velocities U,,/fD for the onset 
of fluid-elastic instability are shown in figures 3 and 4, where they are compared with 
the experimental data available from various sources. It is noted that the interstitial, 
so-called 'pitch', flow velocity U p  is used to define its critical counterpart Up, ,  rather 
than the free-stream one U ,  where Up = U[s,/(s, - D ) ] .  )I Here i t  should be noted that, 
although i t  was considered desirable to segregate the data for 'normal' and 'parallel ' 
triangular arrays ( in figure 3 and 4 respectively) because of the inherently different 
wake structures involved (figure l ) ,  the theoretical values are only slightly different 
in the two cases, as this theoretical model does not recognize these wake-related 
differences. 

One important feature of the theoretical results is that, although those presented 
in figures 3 and 4 are strictly for S = 0.01, they are nonetheless representative of the 
results for other values of 6. For example, in the case of sp/D = 1.5, mS/pD2 = 10 
and x = 30°, U,,/fD is 38.2 and 36.2 for S = 0.01 and 1 respectively; these differences 
are smaller for larger mS/pD2 and vice versa. Hence, although m/pD2 and 6 are 
independent parameters, U,,/fD is much more dependent on their product m6/pD2 

t Indeed, calculations of the critical flow velocity for twelve-cylinder arrays differed by only - 3 
to - 4  yo from those of seven-cylinder arrays. 
1 If Simpson & Flower's interpretation of the phase lag due to viscous effects were adopted 

(Simpson & Flower 1977; Simpson 1983, private communication), then x (in radians) is proportional 
to ,u(2xfD/Up),  where ,u=O(l ) .  Hence, for low values of m8/pD2, x is of the order of 70"-30°, and 
for higher m8/pD2 it  is of the order of 30'-10'. (Reasons for not conducting calculations with x > 30" 
will become obvious once figure 5 has been discussed.) 

11 This is done partly because Up is physically more meaningful (at least for normal triangular 
arrays) and is the velocity conventionally quoted in the literature, and partly because it has been 
found to collapse the experimental data partially for different sp/D. 
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FIGURE 3. Theoretical critical flow velocities for fluid-elastic instability, calculated for the 
seven-cylinder normal triangular array shown and for 8 = 0.01 : -, s,/D = 1.5; - - -, s,/D = 1.3. 
Experimental data: A, Chen t Jendrzejczyk (1981); ., Connors (1980); 0, Gibert, Chabrerie & 
Schlegel (1976); V, Gorman (1976); A, Gross (1975); 0, Hartlen (1974); 0 ,  Heilker & Vincent 
(1981); V, Pettigrew et al. (1978); 0, Soper ( 1 9 8 0 ) ; 0 ,  Yeung & Weaver (1983); (>, hkauskas  
& Katinas (1980); see also Chen (1982), Paidoussis (1983). 
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FIQURE 4. Theoretical critical flow velocities for fluid-elastic instability, calculated for the 
seven-cylinder, parallel (rotated) triangular array shown and for s,/D = 1.3,6 = 0.01. Experimental 
data: A, Connors (1980); 0, Gorman (1976); v, Hartlen (1974); A, Heilker & Vincent (1981); 

, Pettigrew et al. (1978) ; v, Soper (1980) ; 0, Weaver & Grover (1978) ; , Yeung & Weaver 
(1983); see also Chen (1982), Pai’doussis (1983). 
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than on either separately. This agrees with Chen's (1983b) findings and is contrary 
to Weaver & El Kashlan's (1981). 

It is noted that in figures 3 and 4 there are no multiple stability-instability bands 
a t  low values of m8/pD2, as is the case in Lever & Weaver's (1982) and Chen's (19833) 
work, and hence there are no 'jumps' in the overall stability diagrams. The reason 
for this is that  in each calculation x was taken to  be a constant (albeit recognizing 
that it is functionally dependent on U / f D )  ; had x explicitly been taken as a function 
of U/fD-which would have required an iterative solution technique for the 
determination of the critical U / f D  - then the trigonometric functions in (23) would 
have become multivalued, and hence multiple solutions for the stability boundary 
(at low m8/pD2) would have emerged. 

Another important feature of the results is that  the use of U p  in preference to 7J 
has achieved the effective collapse of the theoretical results (in the two cases of sp/D 
of 1.3 and 1.5), except for low values of m8/pD2, as shown in figure 3. 

The theoretical Up, / fD for x = 10" and 30" correspond to oscillatory instabilities, 
and are thus directly comparable with the experimental data, whilst those for x = 0" 
are associated with divergence, which is a non-oscillatory instability. Hence, it is quite 
clear that  viscous effects and the lag they introduce between cylinder displacement 
and the fluid forces thereby generated are quite important in the development of 
fluid-elastic instability. 

For x = 10" and 30" the frequency at Up, of the mode becoming unstable is close 
to its value at Up = 0, which agrees with experimental observations (Pai'doussis 1980, 
1981); eg . ,  for x = 30°, m/pD2 = lo3, 6 = 0.01 (so that m8/pD2 = lo), sp/D = 1.5, 
the ratio of the former to the latter frequency is 0.996. It should nevertheless be noted 
that this does not hold for small m/pD2;  thus, for m/pD2 = 10,6 = 1 (so that rn6/pD2 
is still 10) and otherwise the same parameters as above, this frequency ratio is 0.597. 

Comparing the theoretical results with the experimental data, it  is noted that theory 
overestimates the critical flow velocity for instability roughly by a factor of three, 
for x = 30", and nearly five, for x = 10" - in an average sense, as the experimental 
data display a very large spread in themselves.? Here i t  should be noted that i t  would 
be reasonable to compare the experimental data a t  large m6/pD2 with smaller x than 
those for small m8/pD2, as the former are associated with higher values of U p c / f D ;  
this would make agreement for large m8/pD2 (gaseous flows) rather worse than for 
small ones (liquid flows). 

One of the reasons why this theory overestimates U,,/fD, especially a t  high 
m8/pD2, is that  it does not take into account the presence of wakes and wake- 
interference effects on the aerodynamic-stiffness coefficients, which normally render 
the aerodynamic-stiffness matrix asymmetric. As shown elsewhere (Price & Pai'doussis 
1983), asymmetry of this matrix, which effectively means that the static force field 
is non-conservative, has a strong destabilizing effect on the system. This effect is 
entirely absent in this analysis, where this matrix is symmetric. 

It is of interest that the trend in the theoretical Up,/fD with increasing m6/pD2 
is similar to that shown by the experimental data, especially if Up,/fD for x = 30" 
is associated with small m8/pD2, and that for x = 10" or less for large m6/pD2 - for 

t It is noted tha t  the experimental rJp,/fD and m8/pI12 in many cases are calculated with values 
off, m and S injuid,  rather than in vacuo as was done in the theory. Moreover, i t  was found not 
usually possible, through insufficient information, to  convert such experimental da ta  t o  their in 
VQCUO counterparts ; this conversion would have resulted in moving the da ta  points concerned to 
the left and a little lower in the ease of low m8/pD2 (liquid flow), but  would hardly affect those 
with high m8/pU2. 
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FIGURE 5.  The theoretical effect of changing the phase-lag angle x on the critical flow velocity for 
fluid-elastic instability, for normal triangular arrays (s , /D = 1.5). 

the reasons mentioned earlier. The theoretical results indicate that 
U,,/fD cc (md'/pD2)n, where n is in the range 0.4-0.6 almost throughout, whereas i t  
is currently suggested that for small md'/pD2 this exponent should be considerably 
smaller than 0.5 (Chen & Jendrzejczyk 1978). 

Of course, the question arises as to how sensitive are the theoretical results 
presented thus far to the value of the parameter x. As shown in figure 5, they are 
not so sensitive - at  least in the range 5" < x < 160". For x < 5" approximately, 
however, the critical flow velocity for lightly damped systems increases sharply as 
x = 0" is approached. (At x = O0, as previously mentioned, the very nature of the 
instability is different.) This effect is nevertheless attenuated by higher damping, as 
shown. For x = 180", no instability is found at  all; the situation here is similar to 
that for x = 0", except that the signs of all flow-induced stiffness terms are reversed. 
It is recalled at this point that, in the calculation of the terms associated with phase 
lag (23), the frequency of oscillation a t  the threshold of instability was taken as the 
natural frequency of the cylinders. For very low values of x or m/pD2 this may indeed 
alter the shape of figure 5. However, the results for x = 0" (divergence) are unaffected, 
since these terms then vanish in any case. 

Considering the drastic simplifying assumptions that have been made in the theory, 
the most serious of which is to ignore the wakes - the existence of viscous effects being 
recognized only through the introduction of the phase lag x - it  is remarkable that 
the theoretical values of U,, / fB for x = 30" or loo are as close to the experimental 
values as they are. Of course, prediction of the critical flow velocity to within a factor 
of 3 or 5 is not satisfactory. Nevertheless, this lack of success should be viewed in 
the context of existing semi-empirical analytical models, relying heavily on measured 
force coefficient data, which are capable of prediction to just within a factor of 2 . t  

One current controversy is concerned with whether one flexible cylinder surrounded 

t In  considering the success, or lack thereof. of this theoretical model in terms of' prrdicting 
l lPc/ fD much more emphasis should be placed on figure 3 than on figure 4, for the reasons stated 
at the outset. The fact that  agreement between theory and experiment is similar in the two cases 
could well be fortuitous. 
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by rigid ones does become unstable for high m&/pD2 - i t  being generally accepted that 
it does for low m&/pD2 (Lever & Weaver 1982; Chen 19836; Pai‘doussis 1983). 
Calculations conducted for one flexible cylinder surrounded by six rigid ones showed 
that, according to this thcory, the flexible cylinder does become unstable for all 
rn&/pD2 - but a t  higher critical flow velocities (by 30-75 yo), as compared with the 
system with seven flexible cylinders. 

7. Conclusion 
A potential-flow theory has been presented for the dynamics, and more specifically 

the fluid-elastic instabilities, of staggered arrays of cylinders in cross-flow. The theory 
is purely analytical, except for the empirical parameter x, which is a measure of the 
phase lag between displacement of the cylinders and the lift and drag forces generated 
on them - owing to viscous effects, otherwise neglected. 

All analytical parts of the theory were carefully checked and compared with 
previous work. Contradictions between previous solutions have been exposed, and 
to some degree resolved, in the present work; hence, to the authors’ knowledge, this 
represents the first successful formulation of the problem in terms of potential-flow 
theory. I n  one sense, this is considered to be the major accomplishment of this work, 
as it permitted the assessment of the limitations of potential-flow theory for 
predicting the dynamical behaviour of the system. 

The most important finding of this work is that ,  if viscous effects are neglected 
altogether, then the only form of instability possible is divergence, which is a static, 
non-oscillatory instability. Hence, having established the prominence of the viscous 
effects, it  was considered desirable to take them into account, albeit heuristically. 
Although no attempt was made to determine the viscous forces per se, one important 
effect of these forces was introduced: the phase lag x. It was found that, with 
reasonable values of this phase lag, theory predicts the occurrence of oscillatory 
instabilities ; moreover, the predicted characteristics of the system and the threshold 
of instability are remarkably close to the measured ones - remarkably, that is, 
considering the degree of idealization entailed in the analytical model. 

The above suggests that  a useful direction for future research could be to attempt 
the analytical modelling of viscous forces on the cylinders, and hence the determination 
of the phase lag inherent therein. 

It is nevertheless recognized that ideal-flow theory is not the most suitable 
fluid-mechanical tool for a successful theory for the problem a t  hand, because of the 
importance of the wakes - even on the quasi-static fluid-dynamic-stiffness coefficients. 
Thus, unless wake-interference effects are accounted for, the essential non- 
conservativeness of the force field (in the static sense), which is known to have a strong 
destabilizing influence on the dynamics of the system, is not recognized. 

Finally, i t  might be useful to discuss this theoretical model in the context of other, 
recently published theories. Price & Pai‘doussis’ (1983) theory requires the 
measurement of the static forces on the cylinders in various displaced positions, and 
Tanaka & Takahara (1981) and Chen’s (19836) theory requires the measurement of 
the dynamic forces over a range of flow velocities - a difficult and tedious task. Lever 
& Weaver’s (1982) theory requires three empirical inputs, and is otherwise analytical ; 
i t  is therefore more comparable to this theory, which involves but one empirical 
parameter. As expected, the more empirical input introduced in the analytical model, 
the more ‘successful’ it is likely to be in terms of prediction of fluid-elastic 
instabilities. 
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Appendix A. Evaluation of some terms in equation (14) for a@/at 

Equation (16) gives the expression for dinl ; similar expressions may be written for 
y jn l ,  pjnl  and Sjn l .  The procedure for evaluation of these quantities will only be 
illustrated through the first. 

The first of (8) may be differentiated with respect to  time and the resulting 
differential evaluated a t  the cylinder equilibrium positions (i.e. r; = ri ,  6; = Oi,  
Rij = R,, kij = kij), yielding 

( -n) ciinl + L:* L: Gmnij{ciiml cos (m + n) kij + sjml sin (m + n) kij} 
K m  

j-1 m=l 

+ [ a j m l s i n ( m + n ) ~ i j - 6 i m z c o s ( m + n ) ~ i l ] ~ i j R i j } .  ( A l )  

From figure 6 i t  may be seen that 

Rij = (uj - ui) cos kij + ( t j i  - t j i )  sin $ij 

and R..$.. 23 23 = -(ui-ui) sin$ij+(~i-tjt) cosk.. t3 . 

Substituting into (A 1 )  yields 

K m  

j = 1  m-1 
(-n)ciinl+ L:* C G m n i i { c i j m l c o s ( m + n ) ~ i j + 8 j m l s i n ( m + n ) ~ i j }  
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Hence, substituting (16) and the equivalent expression for djnl into (A 4), one obtains 
an equation of the form 

+ termsinvolving 3 - L  . i (?t :)I 
Since the above must hold for all possible values of the set klr ,  ~ l j ,  the latter are linearly 
independent, and thus (A 5 )  may be reduced to equating the coefficients of ulr, v l j  on 
either side of the equation; thus 

(-l)m’(m’+n)! Rm’+n = c  {al~m~lcos (m’+n+ 1) ~ i l ~ + S 1 ~ m r l  
m,=l (m‘- I ) !  (n- i)! RZ’fn+l 

x sin (m’ + n + 1) $il.}, (A 6 )  

and a similar expression holds for aainl/avl.. A different procedure must be utilized 
for I’ = i, but will not be presented here for brevity. Similar expressions for the 
derivatives of Sinl may also be written, leading to  the set 

(-n)(?)+[similar terms as in (A 7 a ) ]  = enllr, 
( - n )  (2)+ [similar terms as in (A 7 6 ) ]  = Qinll,, 

(A 8 a )  

(A 8 6 )  

\ 

where 

Pinl l ’  = 

I ( - l )m‘  (m’ + n) ! Rm’+n x ,+n+l[aL,m,l cos(m’+n+ 1 )  $il.+Slrm,lsin (m’+n+ 1) $i13], 
m,=l ( m ’ - l ) ! ( n - l ) ! R ~ ,  

(-l)”’(m’+n)! Rm’+n x ,+n+l[al,m,lsin (m’+n+ l ) + i l , - s l , m , l ~ ~ ~ ( m ’ + n + l ) $ , i l , ] ,  
m,=l  (m’-l)! (n--l)!R;, 
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for 1' + i ,  whilst for 1' = i the following must be employed: 
K K 

p. znla . =  -c * enlj.7 Qinli = - Z* Qinlj'. (A 10) 
j'=l j' = 1 

The set of equations (A 7) and (A S), separately, may be written in matrix form and 
then solved, yielding aajn,/aul,, adjn1/aulr ,  etc. ; with these known, then O i j n l ,  S j n l ,  etc. 
are known, and therefore ajn and bjn of (15). 

Appendix B. Some constants obtained in the analysis 
The constants involved in (19) are given by 

Ail = 2ai11 +atl, Biz = 2yill ,  Ail = 2dtIl, Ril = 2,8i11+6il, (B 1 )  

where a,, is Kronecker's delta; 

the DI;? and Di;? terms may be obtained by replacing a/au,, by a/av,, in the above 
expressions ; 

where 
K 

It is of interest that, for i = 1, Cif) = Dif) = 0 ;  hence there is no velocity-dependent 
force due to motion of the cylinder itself, but only due to motion of neighbouring 
cylinders. Although the surface-pressure distribution on the cylinder is altered by its 
own motion, when integrated around the circumference i t  gives no net effect; this 
is in agreement with single-cylinder results. 
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Finally, the partial-derivative terms in (21)  are given by the corresponding 
derivatives of the terms in (B 5 ) .  Thus 

where partial derivatives of (B 6) are also involved, and 

with similar expressions for the v1 derivatives. It is recalled that aainl/aup and similar 
terms have already been determined through (A 7)-(A 10). 
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